
J .  Fluid Mech. (1973), vol. 59, part 1, pp.  97-115 

Printed in Great Britain, 

97 

Generalized expressions for secondary vorticity 
using intrinsic co-ordinates 

B y  B. LAKSHMINARAYANA 
Department of Aerospace Engineering, The Pennsylvania Stat6 University, 

University Park, Pa 16802 

AND J. H. HORLOCK 
Engineering Department, University of Cambridge 

(Received 3 October 1972) 

Equations for the development of streamwise (or secondary) vorticity, for sta- 
tionary and rotating systems, are derived directly from the vector equation 
for vorticity, using intrinsic co-ordinates. This approach places emphasis on 
the coupled equations for the vorticity components parallel and normal to the 
streamline. The equations derived are more general than those hitherto available, 
being valid for compressible, stratified and viscous flow. Some interpretation 
is given of the physical mechanism causing secondary flow. 

1. Introduction 
A streamwise component of vorticity is developed from the deflexion of EL 

flow with velocity, or density gradients. Some examples of these secondary 
flows are the following. 

(a)  A sheared flow passing around an obstacle (e.g. the flow of water past a 
bridge pier (Hawthorne 1954)). 

(6) A developed pipe or channel flow entering a bend (Hawthorne 1951; 
Marris 1963). 

( c )  A stratified fluid encountering a bend (Scorer & Wilson (1963) have studied 
the influence of this secondary vorticity in inducing secondary instability in 
gravity waves). 

(d )  The end-wall boundary layer passing through a cascade of turbine or 
compressor blades (this phenomenon has been extensively studied in view of its 
important engineering application in turbomachinery aerodynamics (Haw- 
thorne 1966; Horlock & Lakshminarayana 1973; Lakshminarayana & Horlock 
1963)). 

( e )  Curvature of a flow with a temperature gradient binormal to the curvature 
(e.g. flow into a turbine nozzle row from a combustion chamber (Loos 1956)). 

( f )  Flow in rotating passages, such as those in a turbine or compressor, where 
the entry velocity or density may be non-uniform (e.g. Smith 1957). 

(9) Vortex motions induced in atmospheric and ocean currents by the earth’s 
rotation (Marris 1966). 
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Squire & Winter (1951) first obtained an expression for the secondary vorticity 
developed by an incompressible shear flow passing through a bend. Hawthorne 
( 1951) also studied the secondary vorticity generation quantitatively, deriving 
a general expression for the secondary vorticity developed in incompressible 
inviscid flow. He later (1954) used the (Helmholtz) vorticity equation to derive 
a particular form for the secondary vorticity in inviscid and incompressible flows. 
Other investigators (Marris 1963, 1966; Scorer & Wilson 1963; Loos 1956; 
Smith 1957) followed lines similar to  that of Hawthorne (1951); all these analyses 
involve considerable vector manipulation. 

The objective of this paper is first to state the vorticity equation in its most 
general vector form and then to use stationary intrinsic co-ordinates directly 
to derive expressions for the growth in secondary vorticity. This approach 
places the emphasis on coupled equations for two components of vorticity, 
streamwise andnormal, both of which need to be solved. It also gives more general 
equations which can be simplified in special cases, e.g. (a )  inviscid uniform-density 
flow, ( b )  inviscid incompressible stratified flow, (c) inviscid compressible flow, 
( d )  viscous incompressible flow, (e) inviscid incompressible flow with body 
forces. Corresponding equations for a rotating co-ordinate system are then 
given. 

2. Secondary vorticity in a stationary system 
The equation for the vorticity w in compressible viscous flow is 

( V . V ) w  = ( o . v ) v - o ( v . v ) - v x  - - v x  -Vxw-- -V(V.V)  (1) (7) [:: 3P 4P 1 
if the bulk viscosity is taken as zero. Here V is the velocity, w = V x V, p is 
the density, p is the static pressure and ,u is the viscosity. The incompressible 
form of this equation can be found in most textbooks (e.g. Batchelor 1967). 
Terms 3 and 4 arise because of the effect of compressibility or density stratifi- 
cation alone. 

Term 5 may be written as 

- v x  -vxw- - -V(V.V)  =--V%Al-V - X V X O + $ V  - xV(V.V).  (2) [:: 4p 3 P  1 ;  (3 t) 
Term 6 is due to viscosity alone, and we shall use it in the analysis of the 

secondary vorticity developed in the flow of a viscous incompressible fluid 
($2.3, case (d )  below). Terms 7 and 8 involve combinations of the effects of gradi- 
ents of viscosity and density; if the fluid is compressible then it is rarely justifiable 
to assume p is constant, and gradients of ,u should be considered. However, we 
shall not study the flow of a viscous compressible fluid here. 
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Streamline 

/ 

FIGURE 1. Notation used for stationary system. 

b lines 

n lines 

S line 

FIGURE 2. s, nand b lines when us * 0 (Bjorpm 1951). 

We now derive a generalized expression for the vorticity components in an 
intrinsic co-ordinate system (figure 1). 

After Bjmgum (1951), we first define the unit vector along the streamline. 
The vector velocity V = sq, where q is the magnitude of the velocity. The unit 
principal normal vector n is then defined from n/R = s . V s  = as/as, where R 
is the principal radius of curvature. The unit binormal vector b is s x n, so 
that ( s ,  n, b) is a right-handed set of unit vectors. Our natural co-ordinate system 
is based on the vector lines s,  n, and b but it should be noted that only in 
special cases do there exist orthogonal surfaces containing these lines. (Bjmgum 
shows that a complex lamellar flow, with the streamwise vorticity non-zero, is 
one such special case. But in general, with this vorticity non-zero, if we move 
along a circuit ABCDE made up of constant-n and constant4 lines (figure 2) we 
do not return to the point A.)  

We do not, therefore, follow the usual type of analysis involving the Lam6 
coeEcients in orthogonal curvilinear co-ordinate systems, but consider various 
relationships arising from the manipulation and differentiation of the unit 
vectors. 

7-2 
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Some of these relationships valid for intrinsic co-ordinates, given by Bjrargum 

a a a  
V = s -+n-+b-  

as an ab’ 

aq VP v .v  = -+qv.s = -v.--, 
as P 

aq 
ab (i 2) V x V = s [ q + n - + b  --- 

= SW, + nu, + hub. (6) 

The secondary vorticity component us = [q  requires special discussion. The 
quantity 6 is independent of vector magnitude and is defined by 5 = S .  V x S. 
Bjrargum calls this ‘the torsion of neighbouring vector lines’. 

The differential coefficients of the unit vectors s, n and b are 

where a, is the distance in the n direction between neighbouring streamlines, ab 
is the distance in the b direction between neighbouring streamlines and T is the 
radius of torsion of the streamline (see Hildebrand 1962). 

It should be noted that the direction of n taken here is towards the centre of 
curvature, whereas Hawthorne and Loos have taken the outward direction for n. 

2.1. Streamwise component of vorticity 

The equation for the streamwise component of (1) can be derived by taking the 
dot product of the equation with s. We consider first the inviscid terms in t,he 
equation. 

First term: 

(8) 
a a as am, W ,  

s . ( V . V ) o  = 4s.- (0) = q-(s.O)-qw.-  = q--q-. 
as as as as R 

Second term : 
a4 aq aq 84 S. (O.V)V = us-+u,-+w - = us-+- 
as an bab as R . 

Third term: 
1 OJ aP s . o ( V . V )  = --s.w(V.Vp) = -”q - .  
P P as 

Fozcrth term: 

(9) 

The viscous terms become extremely complex in the (s ,n ,  b)  co-ordinates so 
for the time being we leave them in vector form. 
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When (8)-( 11) are substituted in ( l ) ,  and the termsrearranged, theequation for 
the streamwise vorticity becomes 

This is an exact equation, valid for fluids with viscosity p, but with bulk vis- 
cosity zero. The appearance of the factor 2 in the second term arises from equal 
contributions from the substantial derivative dw/dt  and the term (w . V )  V 
respectively. Examination of the inviscid terms in (12 )  shows how secondary 
vorticity is developed (a) when there is a normal component of vorticity (un) 
in a flow of radius of curvature R; (b )  when density and pressure gradients exist in 
the b, n surface in mutually perpendicular directions (since V(p- l )  and V p  are 
normals respectively to surfaces of constant density and constant pressure, 
the vector V(p-') x V p  is tangential to the curve of intersection of these surfaces). 
Furthermore, even in the absence of these effects an existing secondary vorticity 
will change (owing to compressibility and velocity changes) through the term 
a(u,/pq)/as owing to vortex stretching. 

2.2. Normal vorticity component 

Similarly the normal component of the vorticity can be derived from the dot 
product of ( 1 )  with n. Again we consider the inviscid terms in detail. 

First  term; 
aw a an 

n . ( V . V ) w  = qn.- = q- ( (o .n ) -qw . -  as as as 

since from Frenet's formula (Hildebrand 1962) 

d n  b s 
ds r R' 
- =--- 

where r is the radius of torsion. 

Second term: 

ab 
a 

n . (w.V)V = n. u , - (qs)+un-(qs)+w,- (qs)  [ :  an 

= %+- W n Q  (--) aan 

R an 

us!? i a  1 aa, 
R Pq as ab as 

= -+ Wnq (--- (pq)  -- -) . 
Third term: 

-WnqaP n . o ( V . V ) = - w ,  - =-- ("7) a s *  
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Fourth term: 

The viscous terms are again left in vector form because of their complexity. 
Substituting (13)-( 16) in (I) ,  we obtain after some rearrangement 

-n.V(,u/p) x V x w+$n.  (V(,u/p) x V ( V .  V)) (17 )  

Thus the normal vorticity changes continuously, and (12) and (IS) are coupled. 
Marris (1963, 1966) has provided the incompressible form of the equation for 
streamwise vorticity, but this by itself is not sufficient to calculate w,. For a 
complete solution (12) and (18) should be solved simultaneously; viscosity is 
usually important only in (18). 

2.3. Special cases 

We consider first inviscid flows. 

then (12) and (17) become 
(a )  Inviscid uniform-density $ow. If the flow is inviscid and of uniform density, 

The first of these equations is the most familiar equation for the development 
of streamwise vorticity in incompressible inviscid flow. Since the vortex lines and 
the streamlines lie in surfaces of constant stagnation pressure P 

b .VP/p  = b.  (V  x W) = W .  (b x V) 

= (w. n) q = qw, = q(aq/ab). (21) 

Substituting (21) in (19) and integrating between an upstream station 1 and a 
downstream station 2 gives 

where is the angle between the direction of V P  (the principal normal to the 
Bernoulli surfaces) and the binormal to the streamlines (figure 1). This is Haw- 
thorne's (1951) expression for the secondary vorticity. 

An alternative approximate form is given by assuming that the Bernoulli 
planes remain flat with r = co, and as/ab = (b/ah)  (aab/as) = 0. We may then write 
q = qPu, where qp = qB(s) is a potential flow velocity with upstream value of 
unity, and u = u1(b). Equation (20) then gives 

wnqp = wnl (constant). (23) 
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Substituting (23) in (19) and integrating yields 

which is Hawthorne’s (1954) expression for secondary flow about struts and 
airfoils. 

If qp remains constant through the duct and ds = rde, where E is the turning 

(25) 
angle, 

which is Squire & Winter’s (1951) expression for secondary vorticity in a duct. 
(b)  Incompressible inviscid stratified $ow. A stratified flow is defined as one in 

which the density does not change in the streamwise direction (aplas = 0 ) )  the 
separate terms in the continuity equation being zero: 

C O ~  - wS1 = 2 ~ ( d ~ , / d b ) ,  

v . v p  = 0 = p v . v .  ( 2 6 )  

However, density gradients appn and ap/ab may exist in a b,  n surface, so that 
the terms in the square brackets in (12) and (18) must be retained. 

But, since the flow is inviscid, 

so that 

Equation (12) then becomes 
a 2 ~ ,  1 ap 
- (w,/q) = -+- - 
as q R  p R a b  

= - --In (pq2) ,  
l a  
R ab 

(29) 

the expression derived by Scorer & Wilson (1963) and Marris (1964) (see also 
Draziii (1961) and Hawthorne & Martin (1955), who give expressions for the 
secondary vorticity developed in this case). It should be noted that secondary 
vorticity develops in a stratified flow with a density gradient ap/ab and principal 
radius of curvature R, even if w, = 0. A density gradient ap/an may exist but does 
not affect the development of 0,. 

( c )  Compressible inviscid $ow. If the flow is inviscid but compressible 

(P = Pb7 n, b ) )  

then the relations (27) and (28) are still valid and (12) is 

However, if the fluid is barotropic, p = f (p) ,  then the term in the square 
brackets in (12) is identically zero (not only is ap/ab zero, but also @lab = 

f’-lap/ab = 0). Then 
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This equation would for example be valid for a homentropic flow of a perfect 
gas in which p/py = constant throughout the fluid. 

An alternative form to (31) (for inviscid flow of a compressible fluid, not neces- 
sarily a perfect gas, with entropy gradients) may be obtained by eliminating 
the vorticity component w, from that equation. Taking the dot product of b 
with Crocco's equation gives 

b.(Vho-TVS) = IVhol cosp,-TlVSl C O S ~ ,  = qw,. (33) 

Fl and p2 are the angles between the normals to the surfaces of constant stagna- 
tion enthalpy ho and entropy Sand the binormal direction. The term P - ~ R - ~  ap/ab 
in (3 1) arises from the term V x Vp/p in the original vorticity equation and may be 
written alternatively in terms of temperature T and entropy S :  

V _- s . V x -  (VP) - - -- v . V x ( V h - T V S )  = - . ( V T x V S ) .  
1 

Pq2 P Pq3 PQ3 

Hence an alternative expression for the secondary vorticity growth in com- 
pressible inviscid flow is 

This expression is equivalent to that given by Loos (1956), although he 
does not distinguish between p1 and p6 and he expresses V T  x V S  in terms of 
stagnation temperature and o. (His equation is inconvenient to use in view of the 
appearance of w, which is unknown, on the right-hand side of the equation.) 
It should be noted here that compressibility really only introduces additional 
secondary vorticity when V T  and V S  are not in the same direction or when the 
pressure and density gradients are normal to each other in the b,n surface 
(equation 12). 

For a perfect gas the secondary vorticity can also be expressed in terms of 
stagnation pressure P and density. This can be illustrated by expressing (31) 
in terms of static temperature. AsplpT isnow constant, the density gradientterm 
is p-l appb  = - T-laT/ab, since aplab = 0,  and 

1 aT 
(35) 

Again for the perfect gas, the Crocco equation (33) can be written 5s (Haw- 
thorne 1955 a) 

v x w = C p ( l - ~ ) V T o + - - V P .  T 1  
To Po 

The dot product of this equation with b provides 

Furthermore 
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Using these equations, w, and T can be eliminated from (35) to give 
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A similar expression has been derived by Hawthorne (1955a), by another route. 
Although (36) is applicable for a perfect gas only, it is probably the most useful 
form of the equations for growth of secondary vorticity. 

( d )  Incompressible viscousJlow. For this case the governing equations (12) and 
(17) become 

and 

or 

Marris has given (37), but did not provide (38). 
Louis (1956) has obtained an approximate solution to these equations, by 

assuming that viscous effects in a slightly deflected flow with a given entry shear 
are the same as the (known) viscous effects in an undeflected flow with the same 
entry shear. 

Following Louis, the viscous flow about a two-dimensional body is considered 
as a superposition of two flows by writing q = qpu + u', where qJs) is the potential 
flow velocity of the deflected flow with an upstream value of unity, u(s,  b)  is the 
known viscous solution for velocity in the absence of deflexion of the flow, and 
u' is a small perturbation. Let wn0 = au(s, b)/ab be the normal velocity in the 
absence of flow deflexion. Then in this two-dimensional primary flow 

= 0 = aa,/as, 

and (38) reduces to  (39) 

When there is flow deflexion, Louis assumes that the spanwise flow can be 
neglected (i.e. &,/as is very small and 7 is very large), so that (38) becomes 

where w; is the perturbation in normal vorticity. From the difference between (39) 
and (40) 

a[w;q,u + (qp - 1)  wn0u + w n O t q  /as N 0,  (41) 

neglecting the product term wku' and (p/p) V2w;. Louis argued that if the initial 
shear is weak and the deflexion is small then the third term on the left-hand side 
is of second order. Then approximately 



106 

since (qI, - 1)  a(wnOu)/as is also of second order. Hence 
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and (44) 

The direct effect of viscosity on the streamwise equation is neglected, although 
the indirect effect through changing w, is allowed for. Thus 

if it is again assumed that au/as is small, but that aqp/as must be retained. Hence, 
substituting (44) in (45), 

or (47) 

Equations (44) and (47) are identical to those of Louis (1956). Essentially this 
approach comes down to solving the equation 

using values of q and w, obtained from q = qDu, where qp and u are known from 
potential flow and a two-dimensional viscous flow respectively. 

( e )  The effect of body forces in inviscid incompressibleflow. Some understanding 
of the generation of the total streamwise vorticity in flow past a body or bodies 
is obtained by supposing that there are distributed body forces F/p ( s ,  n, b )  per 
unit volume in the flow, simulating the action of wings or blades. The secondary 
vorticity equation for incompressible inviscid flow then becomes 

If Hawthorne's (1967) small shear, large deflexion assumption is made, then 
the Bernoulli surfaces do not distort. For such a flow through a cascade or 
around a wing, with Bernoulli planes lying in surfaces of constant b,  and body 
forces existing in the n direction, 

F, = n . F  = -pn.(sqxby) 

= PqY, 

where y is the distributed bound vorticity replacing the blades (figure 3), and 

b . F  = Fb = 0. 



Generalized expressions for secondary vorticity 107 

n 

FIGURE 3. Distributed bound vortioity replacing the blade or wing. 

Hence 

and on integrating, 

Approximately, if q is nearly constant along a streamline, 

where I? = yds, the total bound circulation distributed along the streamline. 

Additional streamwise vorticity arises, associated with this bound circulation. 
Hawthorne (1955 b)  has designated these additional components as 'trailing shed 
vorticity ' (the gradient of I?, usually associated with shed vorticity) and 
'trailing filament vorticity ' ( rq- l  dqldb) respectively. 

In  flow through a cascade the first component of vorticity is contained within 
the passage between the blades, and the second and third components within the 
blade wakes. As the blade spacing is reduced, until the blades may be represented 
by distributed body forces F, so the streamwise components of vorticity come 
together until all three may be thought of as lying along the unit vector s of 
the streamline, as described by (53). 

sd' 

3. Secondary vorticity in a rotating system 

tance in geophysical fluid mechanics and turbomachinery aerodynamics. 

velocity 8 is (Greenspan 1968, p. 5) 

The secondary vorticity generation in a rotating frame is of particular impor- 

The equation of motion with reference to axes rotating a t  constant angular 

< x W $ 2 8  x W = -V'p/p-O'[gW2-&(51 x r).  (8 x r)] 

- 141 V' x V' x W f 4 !! V'(Vl. W) , (54) 
P 3 P  

where the prime denotes differentiation with respect to the rotating frame, W 
is the relative velocity and < is the relative vorticity (< = V' x W = o - 2S2). 
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Relative 

n 

n 
I ‘  -- 
V n 

FIGURE 4. Notation used for rotating system. 

The curl of (54) gives 

(W . V’) < = (< . 0’) w - 2V‘ x (8 x W) - 0‘ x (p” V’p) - <(V’ . W) 
(1)  (2)  (3) (4) (5) 

+pp-lV‘2<-V‘(pp-l) x V’G+$V’(pp-l) x V‘(V‘. W). (55) 
(6 )  (7) (8) 

To derive a generalized secondary vorticity expression, the intrinsic co- 
ordinates (shown in figure 4) will be employed. s‘, n’ and b‘ are now unit vectors 
along the relative streamline, principal normal and binormal directions respec- 
tively, so that W = s’ W, < = s’Cs. + n’Cn. + b’Q,. The relationships (3)-(7) derived 
for this (s, n, b )  co-ordinate system are also valid for this (s‘, n’, b’) system. 

3.1.  Streamwise component of relative vorticity (6,) 
The procedure used in deriving the streamwise component of vorticity from (55) 
is similar to that used in the stationary systems. The streamwise components of 
terms 1 , 2 ,  and 4-8 are similar to those derived in $2.1,  and only the third term, 
- 2V‘ x (Q x W), requires special consideration. 

Since S2 is a constant vector and W = s’ W ,  

5’ .  2V’ x (a x W) = 2S’.Q(V’. W) - 2s’ .  ( 8  .V’) w 
= 2 ~ ‘ . 8 ( V ‘ . W ) - 2 ( 8 . V ‘ )  W - ~ W S ‘ . ( ~ . V ‘ ) S ‘  (56) 

but 

so that 

2S’.Q(V’.W) = 2s ’ .Q  -- = - 2 s ’ . 8  -- , ( w:‘p) (7:) 
(Q.0’) w = 8 . ( V ’ W ) ,  

S’.2V‘ x ( 8  x W) = - 2ns<----7 W aP - 2 8 .  (V’W). 
P as 

(57) 
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Hence, for the rotating case 

+ - - p ' . V '  - xV'(V' .W) ,  
4 1  3PW 0 

109 

(8) 

where R' is the radius of curvature of the relative streamline. 
The means by which the streamwise component of vorticity is produced in a 

relative flow are similar to those in a stationary system, namely through deflexion 
of the relative flow with a normal vorticity component and the existence of den- 
sity and pressure gradients normal to each other in the b', n' surface (note that 
aplab' is not now zero in inviscid flow) but additional terms 4 and 5 exist because 
of the effect of rotation. It is interesting to note that even if the relative vorticity 
c is initially zero, contraction or curvature of the streamlines (V'W + 0 )  sub- 
sequently produces secondary vorticity even in incompressible flow. For this 
reason geophysical flows are almost always rotational and the interaction of the 
relative vorticity and so called planetary vorticity 2 8  is a central feature of 
geophysical fluid dynamics (Pedlosky 1972). 

Marris (1966) suggests that the term 2S2. V' W/pW2 dominates in comparison to 
the term 22JpWR' in (58) (i.e. that 'secondary vorticity generation from the 
rotation must greatly exceed any effect from the streamline curvature ') but 
this is not always the case. Consider for example the inviscid incompressible flow 
through a rotating row of compressor blades where the inlet absolute vorticity 
o is zero and assume that the relative streamlines lie on a cylindrical surface, 
whose axis lies along 8 so that 8 .  b' = 0. The change of W with 5' is neglected 
(awlas' = 0)  and aW/an' = W/R', since there is no relative or absolute vorticity 
in the b' direction. Then since c = - 2S2 

-2Q.n' 4Q2, 
WR' WR' WR' 
2L - 2 - - -- - -- 

and 
2 8 . ( V ' W )  28 .n 'aW 2QB, =--- -- 

W2 W 2  an' WR" 

Hence, the secondary vorticity generation due to the fifth term in (58) is of the 

Note that the absolute vorticity resolved along the relative streamline does not 
same order as that due to the secon,d term. 

change in this case, since -( a w 8 , - 2 ~ . 9 '  )=-- 2S2. n' 
as' WR' 

or 
2S2.n' 2S2 as' - -- WR' +- - = o .  "Y) asi W - w *as! 
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3.2.  Absolute vorticit y w along the relative streamline 

Equation (58 )  can be recast into IL form that provides an expression for the 
development of absolute vorticity along the relative streamline (us.). This form is 
useful in many practical applications, e.g., turbomachinery flows. 

The fifth term in (58) can be expressed as 

- - (s'-+n',+b'- (59) 
2 f i . v ' ~  2~ aw aw - 

pW2 pW2' ad an 

Now, cs, = ws, - 2 a .  s', 

Cn, = wn, - 2Q. n' = 8 W/ab, 

cb, = wb, - 2 a .  b' = - aW/an' + WIR', 

where us!, w,. and wb, are the components of absolute vorticity along the s', n' and 
6' directions respectively. 

Using (61 )  and (62 ) ,  equation (59) can be expressed as 

Substituting (63 )  in (58), noting that 

a(Q , s')/as = Q . n'/R' 

and rearranging the terms, yields 

-- l ['p a~ a~ "1 +viscous terms, (64) p3 W 2  ab' an' an' ab' 

-- I [a' --_-- a' a' "1 +viscous terms. (65) p3 W 2  2b' an' an' ab' 

Comparison of this equation with the inviscid form of (12) shows the effect 
of rotation. The addition terms due to rotation can be expressed as 

ZQ. b'w; - 2Q .n'wbr 2 
= - [(a. b') (w . n') - (8. n') (w . b')] 

PW2 PW2 
2 2 Q x w  

= - (Qxw).(b'xn')  = -~ . s'. 
P W 2  P W 2  

Thus additional secondary vorticity (absolute) is generated when Q x w has 
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Relative 
streamline 

FIGURE 5. Surfaces of constant I .  (a)  Cylindrical. (6) Radial. 

a component in the relative streamwise direction. Rotation has no effect when 
the absolute vorticity vector lies in the 5, n. plane and the rotation S2 has no com- 
ponent in the binormal direction. 

For example, consider the case where the planes of constant I t  are cylindrical, 
with 0 in these surfaces and 2Q lying parallel to the axis of the cylinders, as at 
entry to an axial compressor rotor, receiving a non-uniform velocity profile. 
Then S2 x w is in the b direction (figure 5a) so rotation contributes no additional 
secondary vorticity. The generation of w,. is mainly due to wnr, and/or the density 
gradients as in a stationary system. 

On the other hand, if the surfaces of constant I are radial planes, as in a centri- 
fugal turbomachine (figure 5 b) ,  the rotation-induced secondary vorticity may be 

t V’IIp = W x o, see below, $3.5.  
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quite appreciable. For radially outward non-uniform flow (with w,. $: 0) and 
radial blading, 8. n‘ = 0,  a.  b’ = 0, R‘ = 03 and (ob, = 0. Secondary vorticity 
is produced only by the effect of rotation. For swept-back or swept-forward 
blading, secondary vorticity is produced by rotation and by curvature of the 
relative flow. The ratio of the third term to the second term (rotation-induced 
secondary vorticity to curvature-induced secondary vorticity ) in (65) is 

8.b’R’ S2R’ Qr R’ U R’ 
-- - - = (w) = - - 

W W W r ’  

where r is the distance from the axis of rotation and U = Qr is the blade speed. 
UlW is large a t  the tip of a centrigual compressor (of order 4: 1) and R’lr is cer- 
tainly not less than unity, so that rotation-induced secondary vorticity will still 
dominate. 

3.3. The normal component of relative vorticity (6.) 
The procedure for deriving the normal component of (55) is similar to that used in 
deriving (13)-( 18). The only additional term to be evaluated is 

n’. 2V’ x 8 x W = 2n’.Q(V’. W) - 2n’. (8 .V’ )  W 

w aP 
p as‘ 

- 2Qn, - - - 2 Wn‘ . (a. V’ ) s‘ . 

Hence, (66) can be expressed as - 

n ’ . 2 V f x 8 x  W = -- +T as RI +-- a,, ab’ 

Hence, for the rotating case, the equation corresponding to (1  7)  is 

+viscous terms. (67) 1 
The mechanism by which the normal relative vorticity component changes is 

the same as in the stationary system but the rotation brings additional changes 
through the terms 4, 5 and 6 in (67). The additional effects due to rotation are 
similar to those generating the secondary vorticity (i.e. the rotation has the effect 
of producing normal vorticity in a flow with curvature or velocity gradients, even 
if the relative vorticity is initially zero). 
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3.4. Normal component of absolute vorticity (on,) 

As was mentioned earlier, it is useful in many practical situations to express the 
normal vorticity equation in terms of absolute vorticity change. Noting that 

a an‘ -(28.n’) = 2 8 . ?  = 2Q. 
as ’ as 

and using (61) and (62), equation (67) can be expressed as 

+viscous terms. (68) 

3.5. Special cases 

In  stationary co-ordinates, simplified expressions for secondary vorticity were 
given for several special cases. The corresponding cases for rotating co-ordinates 
can be derived, from the general equations, but we give here only two examples: 
(a) inviscid uniform-density flow; ( b )  incompressible inviscid stra.tified fluid. 

(a) Inviscid uniform-density $ow. In  this case, the expressions involving the 
absolute vorticity will be used to show that the authors’ generalized expressions 
reduce to those of Smith (1957). 

For incompressible flow, (65) and (68) reduce to 

(69) 

These equations, more general than Smith’s, are valid exactly for incompressible 
inviscid flow. The first can be expressed exactly in a form given by Smith (1957). 

Smith notes that the vortex lines (absolute) lie in the (relative) Bernoulli 
planes: 

where 

Thus, 

VI/p = w x w, 

I = p + + p W 2  - .ijp(Qr)2. 

b ’ . V ‘ l / p  = b ’ . ( W x w )  = (w.n’) W = on. W ,  

i.e. lV‘I/pl COSP‘  = wont, (71) 

where p’ is the angle between the binormal direction and the normal to the 
Bernoulli planes. Further, 

S . ( W x w )  = W . ( w x Q )  = -s ’ . (Qxo)  w =Q.V’I /p ,  

QlV’I/p Wl cos 6 = - s’. (a x w), i.e. 

where 6 is the angle between 8 and V‘Ilp. Hence (69) becomes 

(73) 

FI .M 59 a 



114 B. Lakshminarayana and J. H .  Horlock 

Consider the non-uniform flow through an axial compressor rotor in which the 
relative streamlines and absolute vortex lines lie on cylindrical surfaces (wb, = 0 )  
and the vector 8 is parallel t o  the axis of these cylindrical surfaces (Q . b’ = 0). 
Then if the flow is incompressible and inviscid and there is no variation of W 
along the streamlines, (70) gives wn, = constant and equation (69) simplifies to 

where d is the turning angle of the relative streamline. This is the equivalent of 
Squire 8: Winter’s expression (equation 25) for a rotating case. 

(b)  Incompressible inviscid stratified $ow. The study of secondary flow genera- 
tion in a stratified fluid in a rotating frame is useful in understanding the vortex 
motion in atmospheric and ocean currents. 

The equation of motion for inviscid stratified flow in a rotating frame of refer- 
ence is after Marris (1966), for a point on the earth’s surface 

-Op/p = w . v ’ w + 2 Q x w - g .  (75) 

The gravitational acceleration g is retained here since it plays a significant 

The dot product with n of (75) provides 
role in geophysical fluid mechanics. 

Substituting for i@/an’ (equation 76) in (58) and rearranging the Germs, the 
secondary vorticity expression for incompressible inviscid flow stratified in the 
b‘ direction can be shown to be 

(1) (2) (3) (4) 

This expression was originally derived by Marria (1966) using first the kine- 
matics of the vorticity. Marris expresses the second term in (77) in a form which 
can be shown to be the same as the authors’: 

2 s ’ . ( 8  x W) x V’p - 2(n’ x b ’ ) . ( 8  x W) x V’p - 
PW2 P W 2  

= (2/pW2) [(n’.&2 x W) (b’.V’p)- (n’.V’p) (b‘.Q x W) 

- 2n’. (8 x W) - ap 
- 

pw2 a r  
since n. Op = +/an’ = 0 in incompressible stratified flow. 

It may be noted that equation (77) for the growth of relative streamwise 
vorticity in stratified flow in a rotating co-ordinate system is less general than 
equation (30) for the stationary co-ordinate system, in which it was not necessary 
to assume stratification in the b direction only. 

This paper is dedicated to Sir William Hawthorne, who laid the groundwork 
of secondary flow theory, which has now reached the status of a ‘classical’ area 
of fluid mechanics comparable to potential flow theory. 
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